Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Magnetic field morphology and evolution in the Central Molecular Zone and its effect on gas dynamicsThe interstellar medium in the Milky Way’s Central Molecular Zone (CMZ) is known to be strongly magnetised, but its large-scale morphology and impact on the gas dynamics are not well understood. We explore the impact and properties of magnetic fields in the CMZ using three-dimensional non-self gravitating magnetohydrodynamical simulations of gas flow in an external Milky Way barred potential. We find that: (1) The magnetic field is conveniently decomposed into a regular time-averaged component and an irregular turbulent component. The regular component aligns well with the velocity vectors of the gas everywhere, including within the bar lanes. (2) The field geometry transitions from parallel to the Galactic plane near ɀ = 0 to poloidal away from the plane. (3) The magneto-rotational instability (MRI) causes an in-plane inflow of matter from the CMZ gas ring towards the central few parsecs of 0.01−0.1 M⊙yr−1that is absent in the unmagnetised simulations. However, the magnetic fields have no significant effect on the larger-scale bar-driven inflow that brings the gas from the Galactic disc into the CMZ. (4) A combination of bar inflow and MRI-driven turbulence can sustain a turbulent vertical velocity dispersion ofσɀ= 5 km s−1on scales of 20 pc in the CMZ ring. The MRI alone sustains a velocity dispersion ofσɀ≃ 3 km s−1. Both these numbers are lower than the observed velocity dispersion of gas in the CMZ, suggesting that other processes such as stellar feedback are necessary to explain the observations. (5) Dynamo action driven by differential rotation and the MRI amplifies the magnetic fields in the CMZ ring until they saturate at a value that scales with the average local density asB≃ 102 (n/103cm−3)0.33µG. Finally, we discuss the implications of our results within the observational context in the CMZ.more » « lessFree, publicly-accessible full text available November 1, 2025
- 
            The Milky Way’s Central Molecular Zone (CMZ) differs dramatically from our local solar neighbourhood, both in the extreme interstellar medium conditions it exhibits (e.g. high gas, stellar, and feedback density) and in the strong dynamics at play (e.g. due to shear and gas influx along the bar). Consequently, it is likely that there are large-scale physical structures within the CMZ that cannot form elsewhere in the Milky Way. In this paper, we present new results from the Atacama Large Millimeter/submillimeter Array (ALMA) large programme ACES (ALMA CMZ Exploration Survey) and conduct a multi-wavelength and kinematic analysis to determine the origin of the M0.8–0.2 ring, a molecular cloud with a distinct ring-like morphology. We estimate the projected inner and outer radii of the M0.8–0.2 ring to be 79″ and 154″, respectively (3.1 pc and 6.1 pc at an assumed Galactic Centre distance of 8.2 kpc) and calculate a mean gas density >104cm−3, a mass of ~106M⊙, and an expansion speed of ~20 km s−1, resulting in a high estimated kinetic energy (>1051erg) and momentum (>107M⊙km s−1). We discuss several possible causes for the existence and expansion of the structure, including stellar feedback and large-scale dynamics. We propose that the most likely cause of the M0.8–0.2 ring is a single high-energy hypernova explosion. To viably explain the observed morphology and kinematics, such an explosion would need to have taken place inside a dense, very massive molecular cloud, the remnants of which we now see as the M0.8–0.2 ring. In this case, the structure provides an extreme example of how supernovae can affect molecular clouds.more » « lessFree, publicly-accessible full text available November 1, 2025
- 
            ABSTRACT The feedback from young stars (i.e. pre-supernova) is thought to play a crucial role in molecular cloud destruction. In this paper, we assess the feedback mechanisms acting within a sample of 5810 H ii regions identified from the PHANGS-MUSE survey of 19 nearby (<20 Mpc) star-forming, main-sequence spiral galaxies [log(M⋆/M⊙) = 9.4–11]. These optical spectroscopic maps are essential to constrain the physical properties of the H ii regions, which we use to investigate their internal pressure terms. We estimate the photoionized gas (Ptherm), direct radiation (Prad), and mechanical wind pressure (Pwind), which we compare to the confining pressure of their host environment (Pde). The H ii regions remain unresolved within our ∼50–100 pc resolution observations, so we place upper (Pmax) and lower (Pmin) limits on each of the pressures by using a minimum (i.e. clumpy structure) and maximum (i.e. smooth structure) size, respectively. We find that the Pmax measurements are broadly similar, and for Pmin the Ptherm is mildly dominant. We find that the majority of H ii regions are overpressured, Ptot/Pde = (Ptherm + Pwind + Prad)/Pde > 1, and expanding, yet there is a small sample of compact H ii regions with Ptot,max/Pde < 1 (∼1 per cent of the sample). These mostly reside in galaxy centres (Rgal < 1 kpc), or, specifically, environments of high gas surface density; log(Σgas/M⊙ pc−2) ∼ 2.5 (measured on kpc-scales). Lastly, we compare to a sample of literature measurements for Ptherm and Prad to investigate how dominant pressure term transitions over around 5 dex in spatial dynamic range and 10 dex in pressure.more » « less
- 
            ABSTRACT The latest generation of Galactic Plane surveys is enhancing our ability to study the effects of galactic environment upon the process of star formation. We present the first data from CO Heterodyne Inner Milky Way Plane Survey 2 (CHIMPS2). CHIMPS2 is a survey that will observe the Inner Galaxy, the Central Molecular Zone (CMZ), and a section of the Outer Galaxy in 12CO, 13CO, and C18O $$(J = 3\rightarrow 2)$$ emission with the Heterodyne Array Receiver Program on the James Clerk Maxwell Telescope (JCMT). The first CHIMPS2 data presented here are a first look towards the CMZ in 12CO J = 3 → 2 and cover $${-}3^{\circ }\, \le \, \ell \, \le \, 5^{\circ }$$ and $$\mid {b} \mid \, \le \, 0{_{.}^{\circ}} 5$$ with angular resolution of 15 arcsec, velocity resolution of 1 km s−1, and rms $$\Delta \, T_A ^\ast =$$ 0.58 K at these resolutions. Such high-resolution observations of the CMZ will be a valuable data set for future studies, whilst complementing the existing Galactic Plane surveys, such as SEDIGISM, the $${Herschel}$$ infrared Galactic Plane Survey, and ATLASGAL. In this paper, we discuss the survey plan, the current observations and data, as well as presenting position–position maps of the region. The position–velocity maps detect foreground spiral arms in both absorption and emission.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
